Robot Operating System

Ing. Domsa Victor Sl.dr.ing. Levente Tamas

What is ROS?

Not an Operating System...

What is ROS?

- A collection of packaging, software building tools
- Development tools for system runtime and data analysis
- Open-source under permissive BSD licenses (ros core libraries)
- A language-independent architecture (c++, python, lisp, java, and more)
- A scalable platform (ARM CPUS to Xeon Clusters)

How it came to be?

How does it work?

It has a core:

- ROS Master
 - centralized XML-RPC server
- Parameter Server
 - stores configuration params/data
- Rosout
 - network-based stdout for messages

ROS Master and Nodes

Nodes

- processes running inside ROS
- can be written in different programming languages
- source and/or sink for data sent over the ROS network (talker and/or subscriber)
- expect to receive specific data types (messages)
- send specific data types (messages)
- a talker specifies to which 'topic' it wants to send data
- a subscriber specifies **from** which 'topic' it wants to receive data

Communication

Topics

- Asynchronous many-to-many communication
- Can have one or more publishers
- Can have one or more subscribers
- Strongly-typed (ROS .msg spec)
- TCP/IP or UDP-based Transport

Services

- Synchronous function-call-like communication
- Can have only one server
- Can have one or more clients
- Strongly-typed (ROS .srv spec)
- TCP/IP or UDP Transport

How to see all the nodes?

Multi-Platform?

- It can run on multiple PCs/robots
- Only one ROS Master

Camera

images: TCP

Creating and running ROS Nodes

Launch files

- XML file
- contains parameters and configurations
- used by the 'roslaunch' tool

Creating and running ROS Nodes

Launch files enable users to:

- Associate a set of parameters and nodes with a single le
- Automatically re-spawn nodes if they crash
- Change node names, namespaces, topics, and other resource names without recompiling
- Easily distribute nodes across multiple machines

ROS Graph Introspection

ROS provides several tools for analyzing the data owing over ROS communication resources:

rosnode

• Gives a user information about a node: publications, subscriptions, etc

rostopic

Gives data rate, actual data, publishers, subscribes

rosservice

- Enables a user to call a ROS Service from the command line
- **roswtf** (wire trouble finder)
 - Diagnoses problems with a ROS network

ROS Graphical User Interface(s)

ROS Graphical User Interface(s)

ROS Graphical User Interface(s)

Rviz

Rviz

ROS Meta-Filesystem

- This meta-system allows ROS (rospack, specifically) to locate any package in the designated path, be it at compile time or runtime.
- Since ROS can find any package at any time, it enables packages to be moved around in the actual system for greater codebase flexibility.
- ROS uses CMake (www.cmake.org) internally to compile and link code, and some more useful tools (e.g. catkin tools).

Packages - ROS Meta-Filesystem

The minimal representation of a ROS package is a directory in the \$ROS_PACKAGE_PATH which contains:

manifest.xml

- Contains package metadata (author, license, url, etc)
- Species system and package dependencies
- Species language-specific export ags

CMakeLists.txt

Contains ROS build rules (executables, libraries, custom build ags, etc)

Makefile

Just a proxy to build this package

Thank You